কোয়াটারনিয়ন – সংখ্যার এক অন্যভুবন

ঘড়ির ঘণ্টার কাটা ঘুরানোর কথা চিন্তা করুন। গণিতবিদেরা অনেক আগে থেকেই জানেন কিভাবে এধরনের ঘূর্ণনকে সাধারণ গুণন দিয়ে ব্যাখ্যা করা যায়। খুব সহজ, যে সংখ্যা দিয়ে কাটার অবস্থান প্রকাশ করা হল, সেটাকে আরেকটা ধ্রুবক সংখ্যা দিয়ে গুণ করলে ঘুরে যাবে অবস্থান। এ ঘুর্ণন তো ছিল একটা তলে, মানে দ্বিমাত্রিক ঘুর্ণন। তাহলে এরকম সহজ উপায় দিয়ে কি ত্রিমাত্রিক ঘুর্ণনকেও ব্যাখ্যা করা যায়? এই সমস্যাটাই এক দশকের বেশি ভাবিয়েছে উইলিয়াম হ্যামিল্টনকে। তিনি ছিলেন ১৯ শতকের অন্যতম এক গণিতবিদ। সমাধান করতে গিয়ে তিনি পেলেন চার মাত্রিক এক নতুন সংখ্যা পদ্ধতি, যা সূচনা করেছে আধুনিক বীজগণিতের।

গণিতের সৌন্দর্য্য: পর্ব-৪ (সবচেয়ে বড় সংখ্যাগুলো)

এখানে প্রত্যেকটি স্তরে ↑ এর সংখ্যা নির্ধারিত হয় তার আগের স্তরের ↑ এর সংখ্যা অনুযায়ী। গ্রাহামের সংখ্যাটিকে (G)সংজ্ঞায়িত করা যায় এভাবে, G= g(64) যেখানে, ১ম স্তরের জন্য g(1) = 3↑↑↑↑3, n তম স্তরের জন্য g(n)= 3↑^(g(n)-1) 3 অতএব গ্রাহামের সংখ্যা G কে লেখা যায়, G = g(64) = 3↑^(g(63))3 বুঝতে পারছেন, g(63) এর মান আসবে g(62) হতে। g(62) আসবে g(61) হতে। এভাবে g(2) এর মান আসবে g(1) হতে, আর g(1) হলো 3↑↑↑↑3। এবার আসা যাক ↑ এর ব্যবহার সম্পর্কে। 3↑3 = 3^3 = 27 3↑↑3 = 3↑(3↑3) = 3↑27= 3^27=7625597484987 3↑↑↑3 = 3↑↑(3↑↑3)= 3↑↑(3↑3↑3) = 3↑ 3↑ 3……3↑ 3↑ 3…………3↑ বিস্তারিত