দাবা আবিষ্কারক ও করোনা (অনুজীবের) মহামারী!

এখন পর্যন্ত পৃথিবীতে যতগুলো দাবা খেলা হয়েছে তার কোনটার সাথে কোনটার হুবুহু মিল নেই। ঠিক কোথায় সর্বপ্রথম দাবা খেলার উৎপত্তি, সেটি নিয়েও বিতর্কের শেষ নেই। কিছু প্রাচীন আমলের হরফে দাবা খেলার প্রারম্ভিক কাল সম্পর্কে ধারণা পাওয়া যায়, পাশাপাশি খেলাটির আদি অস্তিত্বের প্রমাণস্বরূপ কিছু কিছু দাবার গুটিরও হদিশ মেলে। একারণেই, এ নিয়ে জল্পনা-কল্পনা, তত্ত্ব ও মতামতের অভাব নেই। বেশিরভাগ ইতিহাসবিদের ধারণা ভারত, পারস্য কিংবা চীনই দাবার জন্মস্থল। ইউরোপে দাবার যে রূপ অনুপ্রবেশ করে তা আদপে প্রায় ১,৩৫০ বছর আগেই পারস্যে খেলা হতো। এখন, আসল প্রসঙ্গে আসা যাক। দাবা আবিষ্কারককে নিয়ে একটা পৌরাণিক গল্প আছে। যা খুব সম্ভবত বিখ্যাত গণিতবিদ “ইয়াকভ পেরেলমান” এর লেখা।

শূন্যের ওপারে

আমাদের ছোট্টবেলার জ্ঞান থেকে শুরু করি। কোন কিছু নেই মানে ‘শূন্য’। কোন কিছুর অবস্থান নেই, খালি, ফাপা বোঝাতে যে সংখ্যাটি আমরা ব্যবহার করি তা হলো শূন্য। আমরা দৈনন্দিন কাজে যে দশ ভিত্তিক সংখ্যা ব্যবস্থা ব্যবহার করি, তার প্রথম অঙ্কটি শূন্য। এছাড়াও বাইনারী, ট্রাইনারী সহ প্রায় পরিচিত সকল ধরণের সংখ্যাব্যবস্থা শুরু হয় শূন্য দিয়ে। বইয়ের ভাষায় বলা যায়,শূন্য হলো একাধারে একটি সংখ্যা এবংঅঙ্ক। এটি এককভাবে মানের অস্তিত্বহীনতা ও অন্যান্য সংখ্যার পিছনে বসে তাদের যুত পরিচয় প্রদান করে। এছাড়াও দশমিকের ডানে বসে এটি বিভিন্ন সংখ্যার দশমাংশ প্রকাশ করে। অঙ্ক হিসেবে ০ (শূন্য) একটি নিরপেক্ষ অংক এবং সংখ্যার স্থানধারক হিসেবে কাজ করে। শূন্য(০) বিস্তারিত

কোয়াটারনিয়ন – সংখ্যার এক অন্যভুবন

ঘড়ির ঘণ্টার কাটা ঘুরানোর কথা চিন্তা করুন। গণিতবিদেরা অনেক আগে থেকেই জানেন কিভাবে এধরনের ঘূর্ণনকে সাধারণ গুণন দিয়ে ব্যাখ্যা করা যায়। খুব সহজ, যে সংখ্যা দিয়ে কাটার অবস্থান প্রকাশ করা হল, সেটাকে আরেকটা ধ্রুবক সংখ্যা দিয়ে গুণ করলে ঘুরে যাবে অবস্থান। এ ঘুর্ণন তো ছিল একটা তলে, মানে দ্বিমাত্রিক ঘুর্ণন। তাহলে এরকম সহজ উপায় দিয়ে কি ত্রিমাত্রিক ঘুর্ণনকেও ব্যাখ্যা করা যায়? এই সমস্যাটাই এক দশকের বেশি ভাবিয়েছে উইলিয়াম হ্যামিল্টনকে। তিনি ছিলেন ১৯ শতকের অন্যতম এক গণিতবিদ। সমাধান করতে গিয়ে তিনি পেলেন চার মাত্রিক এক নতুন সংখ্যা পদ্ধতি, যা সূচনা করেছে আধুনিক বীজগণিতের।

সমত্বরণে চলমান বস্তুর t-তম সেকেন্ডে অতিক্রান্ত দূরত্ব নির্ণয়ের সূত্রের মাত্রা সমীকরণের রহস্য

এইটা কোনো Textbook নয়। তাই মাত্রা সমীকরণ কাকে বলে, এর তাৎপর্য কী এসব আলোচনা না করে মূল জায়গায় আসি। সম ত্বরণে চলমান বস্তুর তম সেকেন্ডে অতিক্রান্ত দূরত্ব নির্ণয়ের সূত্র হচ্ছেঃ এখানে দ্বারা তম সেকেন্ডে অতিক্রান্ত দূরত্ব (সরণ), দ্বারা আদিবেগ, দ্বারা সম ত্বরণ আর দ্বারা অতিক্রান্ত সময় বোঝাচ্ছে তা আর বলার অপেক্ষা রাখে না। গতি বিদ্যায় বহুল প্রচলিত এই সূত্রের মাত্রা সমীকরণ মেলানোর চেষ্টা করেছেন কখনো? না করে থাকলে এখুনি করুন। আপনি যদি ঠিকঠাক ভাবে (আপাত দৃষ্টিতে ঠিকঠাক) করে থাকেন তাহলে আপনার বাম পক্ষে আসা উচিৎ [L] আর ডান পক্ষ । কি মাত্রা সমীকরণ মিলছে না তো !! আবার, আমরা এটাও বিস্তারিত

অসীম ধারার গল্প

নবম দশম শ্রেণীতে আমাদের অসীম ধারার সাথে পরিচয় ঘটে। বিশেষ করে গুণোত্তর ধারার সাথে পরিচয় হওয়ার দিন কয়েক পরেই আমরা শিখি যে , ½ + ¼ + ⅛ +……………=1 সাধারণভাবে এটা আমরা গাণিতিকভাবে মেনে নেই, কিন্তু কেনো অসীম পর্যন্ত নিয়ে সমষ্টি 1 পাওয়া যায়, তা বোঝার চেষ্টাও করি না। দেখা যাক আমরা কী শিখি, আমরা শিখি যে, s=½ + ¼ + ⅛ +…………… উভয়পক্ষে ½ গুণ দিয়ে পাই, ½s=¼+⅛+………….. যেহেতু অসীম ধারা, বিয়োগ দিলে পাই, ½s=½ বা, s=1 আর এখানে শেষ পদ বিবেচনায় আনাই হয় নি, কারণ এই ধারার পদগুলো ক্রমশ ছোট হতে হতে অসীমে গিয়ে শুন্যের দিকে ধাবিত হবে। বিস্তারিত

বুলিয়ান বীজগণিতের গোড়ার কথা

অনেকেরই বুলিয়ান অ্যালজেব্রা নিয়ে বুঝতে সমস্যা হয়। বুলিয়ান অ্যালজেব্রায় এক আর একে কিভাবে এক হয় সে রহস্যের পর্দা উন্মোচন করতে হলে আমাদেরকে বুলিয়ান অ্যালজেব্রার একেবারে গোড়ায় যেতে হবে। প্রথমে নিচের কয়েকটা উদাহরণ দেখা যাকঃ উদাহরণ-১ আগামীকাল হয় বৃষ্টি হবে অথবা তুষারপাত হবে। এখন এত গরম যে আগামীকাল তুষারপাত হবে না। সুতরাং, আগামীকাল বৃষ্টি হবে। উদাহরণ-২ যদি আজকে শুক্রবার হয় তবে আমাকে স্কুল যেতে হবে না। আজ শুক্রবার। সুতরাং, আমাকে স্কুল যেতে হবে না। উদাহরণ-৩ আমি হয় আজকে অথবা কালকে কাজে যাব। আমি আজকে বাসায় থাকব। সুতরাং, আমি কালকে কাজে যাব। প্রত্যেক ক্ষেত্রে আমরা প্রথম দুইটা বাক্যের উপর ভিত্তি করে সিদ্ধান্তে বিস্তারিত

গৌনিক ও গামাবাবুর গল্প

  গৌনিক! এটা আবার কী জিনিস? এটা আর কিছুই না, factorial এর বাংলা ! 😛   n factorial কে n! দিয়ে প্রকাশ করা হয়। n! হল প্রথম n সংখ্যক স্বাভাবিক সংখ্যার গুনফল। তার মানে, 1!=1 2!=2 × 1=2 3!=3 × 2 × 1=6 4!=4 × 3 × 2 ×  × 1=24 5!=5 × 4 × 3 × 2 × 1=120 …………………. ………… এরকম চলতে থাকবে। খেয়াল করুন, উপরের উদাহরণ থেকে সহজেই বুঝা যায় যে, n!=n.(n-1)! এখন n=1 হলে উপরের সম্পর্কে 0! এসে পড়ে। আর এটি সংজ্ঞায়িত না। কাজেই উপরের সমীকরণ যদি n=1 এর জন্য সত্য হতে হয় তবে 0!=1 হতে বিস্তারিত

0^0 সমান কত ?

১৯ শতকের প্রথমদিকেও গণিতবিদদের মহলে এর ব্যাখ্যা একটি বিতর্কের বিষয় ছিল। সেসময়কার অধিকাংশ গণিতবিদেরা মেনে নিয়েছিলেন । কিন্তু সমস্যা বেধেছিল, ১৮২১ সালে গণিতবিদ Cauchy কে এর মত অনির্ণেয় আকারগুলোর সাথে একই তালিকাভুক্ত করলেন। আবার ১৮৩০ এর দশকে গণিতবিদ Libri এর পক্ষে তার যুক্তি প্রকাশ করেছিলেন। সেটাও ছিল সংশয়পূর্ণ, কিন্তু আরেক গণিতবিদ Möbius তাঁকে সমর্থন দিয়েছিলেন এবং ভুলভাবে দাবি করেছিলেন যে, হলেই হয়। একজন ব্যাখাকারী (যিনি শুধুমাত্র ‘S’ দিয়ে নাম স্বাক্ষর দিয়েছিলেন) এর প্রতিউত্তরে এর উদাহরণ দিয়েছিলেন এবং ফলস্বরূপ এই বাক-বিতণ্ডা কিছু সময়ের জন্য হলেও একটু শীথিল হয়েছিল। যা হোক, অনেক তর্ক-বিতর্ক, দ্বিধা-দ্বন্দ শেষে ১৯৯২ সালে গণিতবিদ Donald Knuth এ ব্যাপারটি বিস্তারিত