অনেকেরই বুলিয়ান অ্যালজেব্রা নিয়ে বুঝতে সমস্যা হয়। বুলিয়ান অ্যালজেব্রায় এক আর একে কিভাবে এক হয় সে রহস্যের পর্দা উন্মোচন করতে হলে আমাদেরকে বুলিয়ান অ্যালজেব্রার একেবারে গোড়ায় যেতে হবে।
প্রথমে নিচের কয়েকটা উদাহরণ দেখা যাকঃ
উদাহরণ-১
আগামীকাল হয় বৃষ্টি হবে অথবা তুষারপাত হবে।
এখন এত গরম যে আগামীকাল তুষারপাত হবে না।
সুতরাং, আগামীকাল বৃষ্টি হবে।
উদাহরণ-২
যদি আজকে শুক্রবার হয় তবে আমাকে স্কুল যেতে হবে না।
আজ শুক্রবার।
সুতরাং, আমাকে স্কুল যেতে হবে না।
উদাহরণ-৩
আমি হয় আজকে অথবা কালকে কাজে যাব।
আমি আজকে বাসায় থাকব।
সুতরাং, আমি কালকে কাজে যাব।
প্রত্যেক ক্ষেত্রে আমরা প্রথম দুইটা বাক্যের উপর ভিত্তি করে সিদ্ধান্তে ( তৃতীয় বাক্য ) পৌঁছেছি। এই প্রথম দুইটা বাক্যকে বলে প্রতিজ্ঞা ( অনুমান) আর তৃতীয় বাক্যটিকে বলা হয় প্রতিজ্ঞার ভিত্তিতে সিদ্ধান্ত। যেমনঃ উদাহরণ তিনে “আমি হয় আজকে অথবা কালকে কাজে যাব“ এবং “আমি আজকে বাসায় থাকব” হচ্ছে প্রতিজ্ঞা। “সুতরাং, আমি কালকে কাজে যাব” বাক্যটি হচ্ছে সিদ্ধান্ত।
লক্ষ করুন “আমি কালকে কাজে যাব” সিদ্ধান্তটি কি প্রতিজ্ঞা দুইটির উপর নির্ভরশীল নয়। হ্যাঁ, নির্ভরশীল। “আমি কালকে কাজে যাব” সিদ্ধান্তটি কি সত্যিই সঠিক? এটা কি সম্ভব নয় যে আমি আজকে বাসায় থাকলাম, আর কাল সকালে ঘুম থেকে উঠে দেখলাম যে আমি অসুস্থ। অসুস্থ থাকার কারণে আমি কালকেও কাজে না গিয়ে বাসায় থাকলাম। তাহলে, আমরা যে সিদ্ধান্ত নিয়েছিলাম তা তো ভুল হয়ে গেল। কিন্তু ভাল করে উদাহরণ-৩ এর বাক্য তিনটি পড়ুন। আমি যদি অসুস্থ থাকার কারণে ( কিংবা অন্য কোনো কারণে ) কালকে কাজে না যায়, তাহলে প্রথম বাক্যটি ( কিংবা প্রথম প্রতিজ্ঞাটি ) মিথ্যা হয়ে যায়। তাই বলা যায়, আমরা যে সিদ্ধান্তটি নিয়েছিলাম তা যে সত্য হবে তার কোনো গ্যারান্টি নেই। প্রতিজ্ঞা দুইটির যেকোনো একটি মিথ্যা হলে, সিদ্ধান্তটিও মিথ্যা হয়ে যাবে। যদি দুইটি প্রতিজ্ঞায় সত্য হয় তবেই আমরা নিশ্চিত ভাবে বলতে পারি যে, সিদ্ধান্তটিও সত্য। এই কারণেই বলেছিলাম যে সিদ্ধান্ত প্রতিজ্ঞার উপর নির্ভরশীল।
এইভাবে প্রতিজ্ঞার উপর ভিত্তি করে সিদ্ধান্তে পৌঁছানো সবসময় যে সঠিক হবে তাও নয়। যেমন নিচের উদাহরণটি খেয়াল করুনঃ
উদাহরণ-৪
হয় রনি অথবা জনি দোষী।
হয় জনি অথবা বনি দোষী।
সুতরাং, হয় রনি অথবা বনি দোষী।
এই যুক্তি প্রক্রিয়াটি যথার্থ নয়। কারণ, প্রতিজ্ঞা দুইটি সত্য হলেও সিদ্ধান্তটি মিথ্যা হতে পারে। যেমনঃ যদি জনি দোষী হয় আর রনি ও বনি নির্দোষ হয়, তাহলে প্রতিজ্ঞা দুইটি সত্য থাকে কিন্তু সিদ্ধান্তটি মিথ্যা হয়ে যায়। তাহলে বোঝা গেল তো, কোন যুক্তি প্রক্রিয়াটি যথার্থ ( যেমন উদাহরণ ১-৩) আর কোনটি যথার্থ নয় ( যেমন উদাহরণ ৪ )।
এবার উদাহরণ ১-৩ এ ফিরে আসা যাক। ভাল করে খেয়াল করলে দেখতে পাবেন উদাহরণ ১ ও উদাহরণ ৩ এর মধ্যে কিছু একটা মিল আছে। সেই মিলটা হচ্ছে উভয় উদাহরণের প্রথম বাক্যে ( কিংবা প্রথম প্রতিজ্ঞায় ) ‘অথবা’ আছে। উভয় উদাহরণে প্রথম প্রতিজ্ঞায় দুইটি সম্ভাবনার কথা বলা হয়েছে। দ্বিতীয় প্রতিজ্ঞায় যেকোনো একটি সম্ভাবনা নাকচ করা হয়েছে। যে সম্ভাবনাটি বেঁচে আছে অর্থাৎ যে সম্ভাবনাটি নাকচ করা হয় নি, আমরা সেই সম্ভাবনাটিকে সত্য বলে সিদ্ধান্ত নিয়েছি। পুরো প্রক্রিয়াটিকে এইভাবে লেখা যায়ঃ
P অথবা Q
Q নয়
সুতরাং P
কি বুঝতে অসুবিধা হচ্ছে ? উদাহরণ-১ এর ক্ষেত্রে P = “আগামীকাল বৃষ্টি হবে” আর Q = “আগামীকাল তুষারপাত হবে” ধরে চিন্তা করুন, তাহলেই বুজতে পারবেন ব্যাপারটা। উদাহরণ-৩ এর ক্ষেত্রে P = “আমি আজকে কাজে যাব” আর Q = ”আমি কালকে কাজে যাব” ধরুন।
এইভাবে পুরো বাক্যংশকে একটি বর্ণের ( যেমন P কিংবা Q কিংবা অন্য কোনো বর্ণের মাধ্যমে ) মাধ্যমে লেখার অনেক সুবিধা আছে। প্রথমত, এটি আমাদের যুক্তির বাস্তবতা নিয়ে মাথাব্যথা দূর করে। যেমনঃ উদাহরণ-১ এর দ্বিতীয় বাক্যে কিংবা দ্বিতীয় প্রতিজ্ঞায় বলা হয়েছে “এখন এত গরম যে আগামীকাল তুষারপাত হবে না”। পাঠক আপনিই বলুন, আজ যদি গরম পড়ে তাহলে আগামীকাল যে তুষারপাত হবে না তা কে বলেছে। ইউরোপে তো দেখা যায় কিছুক্ষণ রোদ তো কিছুক্ষণ বৃষ্টি । তাই এ ঝামেলা থেকে মুক্তি পাওয়ার জন্য পুরো বাক্যংশকে একটি বর্ণের( যেমন P কিংবা Q কিংবা অন্য কোনো বর্ণের সাহায্যে ) সাহায্যে উপস্থাপন করা বুদ্ধিমানের কাজ। দ্বিতীয়ত, P,Q কিংবা অন্য কোনো বর্ণ দ্বারা কি বোঝাচ্ছে তা না জেনেই আমরা সিদ্ধান্ত নিতে পারি। তৃতীয়ত, কোনটি মুখ্য শব্দ তা সহজেই বোঝা যায়। যেমনঃ উদাহরণ ১ ও ৩ এর ক্ষেত্রে মুখ্য শব্দ ‘অথবা’ আর ‘নয়’। পাঠক আপনি বলুন তো উদাহরণ-২ এর ক্ষেত্রে কোনটি মুখ্য শব্দ। তা হলঃ ‘এবং’।
এই যে ‘এবং’, ‘অথবা’ আর ‘নয়’ এগুলোকে প্রতীকের মাধ্যমে উপস্থাপন করলে কেমন হয়। আমরা ‘এবং’ কে (.) ‘অথবা’ কে (+) আর ‘নয়’ কে মাথার উপর (-) এই চিহ্ন দ্বারা প্রকাশ করব। যেমনঃ
P এবং Q = P. Q
P অথবা Q = P + Q
P নয় = ¯P
একটা জিনিস মাথায় রাখবেন তা হলো ‘এবং’, ‘অথবা’ কিংবা ‘নয়’ দেখলেই যে হুট করে (+) (.) (-) বসাবেন তা কিন্তু নয়। যেমনঃ রনি এবং জনি দুই ভাই। এখানে ‘এবং’ এর স্থলে (.) বসানো চলবে না। কারণ, এই এবং দ্বারা দুটি শব্দের সংযোজন বুঝিয়েছে, দুটি বাক্যংশের সংযোজন কিংবা বিয়োজন বোঝায় নি।
তো একটি যুক্তি প্রক্রিয়া সঠিক হবে যদি সকল ক্ষেত্রে প্রতিজ্ঞা আর সিদ্ধান্ত সঠিক হয়। যেমনঃ উদাহরণ-৪ এ শুধুমাত্র একটি শর্তের কারণে (যদি জনি দোষী হয় আর রনি ও বনি নির্দোষ হয় ) সিদ্ধান্তটি মিথ্যা হয়ে যাওয়ার কারণে পুরো যুক্তি প্রক্রিয়াটি সঠিক হয় নি।
P . Q আকারের স্টেটমেন্ট সত্য হবে যদি P ও Q উভয়ই সত্য হয়। P ও Q এর মধ্যে যদি কোনো একটি মিথ্যা হয় তাহলে P.Q মিথ্যা হয়ে যাবে। এখানে সম্ভাব্য অবস্থার কথা বিবেচনা করুন। সম্ভাব্য অবস্থা এখানে চারটি। যথাঃ P সত্য, Q মিথ্যা; P মিথ্যা, Q সত্য; P ও Q দুটোই সত্য; P ও Q দুটোই মিথ্যা। এসব ক্ষেত্রে P.Q সত্য নাকি মিথ্যা হবে তা নিচের ছকের মাধ্যমে দেখানো যায়ঃ
এখানে T = True (সত্য) এবং F = False (মিথ্যা) বোঝানো হচ্ছে। সারণিটিকে বলা হয় P.Q এর সত্যক সারণি। সারণিটি চোখে আঙ্গুল দিয়ে দেখিয়ে দিচ্ছে P.Q শুধুমাত্র তখনি সত্য হবে যখন P ও Q উভয়ই সত্য হবে ( এই কথাটি আমরা একটু আগেও বলেছিলাম, খেয়াল করে দেখুন )। যদি ব্যাপারটা বুঝতে কষ্ট হয় তবে একটা উদাহরণের কথা চিন্তা করুন। উদাহরণ-১ এর ক্ষেত্রে P = “আগামীকাল বৃষ্টি হবে” আর Q = “আগামীকাল তুষারপাত হবে” ধরে চিন্তা করুন, তাহলেই বুজতে পারবেন ব্যাপারটা। উদাহরণ-৩ এর ক্ষেত্রে P = “আমি আজকে কাজে যাব” আর Q = ”আমি কালকে কাজে যাব” ধরুন। বাকি চিন্তার দায়িত্ব আপনার উপর ছেড়ে দিয়ে আমরা আগাই।
এবার ¯P এর সত্যক সারণি তৈরি করা যাক। এর সারণি একেবারেই সোজা। দেখলেই বুঝতে পারবেন।
যারা বুঝতে পারছেন না ক্যাম্নে কী হল, তারা দেখুন। “রহিম আমার মামাতো ভাই” কথাটা যদি সত্য হয় তবে “রহিম আমার মামাতো ভাই নয়” কথাটা মিথ্যা হবে। পুরো ব্যাপারটাকে উল্টিয়েও বলা যায়ঃ “রহিম আমার মামাতো ভাই” কথাটা যদি মিথ্যা হয় তবে “রহিম আমার মামাতো ভাই নয়” কথাটা সত্য। আশা করি, ব্যাপারটা এবার বুঝেছেন।
সবশেষে P+Q এর সত্যক সারণি আমরা তৈরি করব।
Figure_3 এর সবশেষের সারিটিতে ‘??’ লক্ষ্য করুন। ‘??’ এ কি বসবে বলে আপনার মনে হয়ঃ ‘T’ নাকি ‘F’। খেয়াল করুনঃ “আগামীকাল হয় বৃষ্টি হবে অথবা তুষারপাত হবে” এরূপ ক্ষেত্রে আগামীকাল যদি বৃষ্টিও হয় আবার তুষারপাতও হয় তবে পুরো বাক্যটি কি সত্য হবে নাকি মিথ্যা হবে। ঠিকই ধরেছেন, পুরো বাক্যটি সত্য হবে। তাহলে ‘??’ স্থানে ‘T’ বসবে ( Figure_4 খেয়াল করুন ) ।
আমরা আমাদের আলোচনার একেবারে শেষ পর্বে চলে এসেছি। জানেন নিশ্চয়, Boolean algebra তে False (মিথ্যা) =0 আর True (সত্য) =1 ধরা হয়। Figure_1,2,4 এ F=0 আর T=1 বসিয়ে দিলেই হল।
Figure_5 এর শেষ সারিটি খেয়াল করুন “ 1+1=1” । অনেকের মনে প্রশ্ন ছিল, সারা জীবন শুনে এলাম এক আর একে দুই হয়। এখন দেখছি ভিন্ন কথা। এক আর একে ক্যামনে এক হয়………… এইসব আরকি!!! অনেকেই এটার ভুল ব্যাখ্যা দেয়। বলে যে বাইনারিতে দুই বলে কিছু নাই তাই এক হয় ইত্যাদি আবিজাবি বলে। কিন্তু বাইনারি আর বুলিয়ান অ্যালজেব্রা আলাদা জিনিস। বাইনারিতে ০ ও ১ দুটি অঙ্ক কিন্তু বুলিয়ান অ্যালজেব্রায় ০ ও ১ দ্বারা যথাক্রমে মিথ্যা ও সত্য বোঝানো হয়। তাই, আপনারা আর ভ্রান্তির কবলে পড়বেন না আশা করি। আর একটা জিনিস খেয়াল করুন, এখানে যোগ (+) আর গুন(.) দ্বারা তথাকথিত যোগ আর গুন না বুঝিয়ে ‘অথবা’ আর ‘এবং’ বোঝাচ্ছে।
Figure_5,6,7 হচ্ছে বুলিয়ান অ্যালজেব্রার গোড়ার কথা। এগুলোর সাহায্যে বুলিয়ান অ্যালজেব্রার মৌলিক উপপাদ্যগুলো প্রমাণ করা যায়। মৌলিক উপপাদ্যগুলো একনজরে দেখে নিন।
এখানে আমি শুধু তিন ও চার নম্বরটা দেখিয়ে দিব। বাকিগুলো প্রমাণ করা আপনার কর্তব্য।
তিন নম্বরঃ
প্রথম অংশঃ
ধরি, A = 0
তাহলে 0 + 0 = 0 (Figure_7 অনুসারে)
অতএব, A + A = A (প্রমাণিত)
দ্বিতীয় অংশঃ
ধরি, A = 1
তাহলে 1 + 1 = 1 (Figure_7 অনুসারে)
অতএব, A + A = A (প্রমাণিত)
চার নম্বরঃ
প্রথম অংশঃ
ধরি, A = 0
তাহলে, ¯A = 1
সুতরাং, 0 + 1 = 1 (Figure_7 অনুসারে)
অতএব, A + ¯A = 1 (প্রমাণিত)
দ্বিতীয় অংশঃ
ধরি, A = 1
তাহলে, ¯A = 0
সুতরাং, 1 + 0 = 1 (Figure_7 অনুসারে)
অতএব, A + ¯A = 1 (প্রমাণিত)
কোনো ভুল ভ্রান্তি থাকলে কিংবা বুঝতে সমস্যা হলে আমাকে ই-মেইল করতে পারেন।
Email: ashifmarshal A com
A = @gmail.
রেফারেন্স
১. HOW TO PROVE IT
২. একাদশ শ্রেণির তথ্য ও যোগাযোগ প্রযুক্তি বই
৩. Wikipedia
Leave a Reply