সম্ভাব্যতার সমস্যাগুলো মাঝে মাঝে আমাদের হতবিহ্বল করে দেয়। এর আগে গণিতের সৌন্দর্য বইতে আমি জন্মদিনের সমস্যা বা মন্টিহল সমস্যা নিয়ে আলোচনা করেছিলাম সেইসব সমস্যার ফলাফল বা সেই ফলাফলের প্রমানগুলো ছিলো বেশ চমকপ্রদ। আজ তিন-বন্দী সমস্যা নিয়ে আলোচনা করব। এই সমস্যাটিও অনেকটা মন্টিহল সমস্যার মতোই তবে এই ক্ষেত্রে বিষয়টি আরো বেশি চমকপ্রদ মনে হতে পারে।
ধরা যাক, একটি কারাগারে তিনজন বন্দী আছে যথাক্রমে রহিম, করিম ও সলিম নামে। এই তিনজন বন্দীর মধ্যে দুইজনকে পরদিন সকালে মৃত্যুদন্ড দেওয়া হবে। কিন্তু বন্দীদের কারো কোনো ধারনা নেই ঠিক কোন দুইজনকে মৃত্যুদন্ড দেওয়া হবে। এখন এদের মধ্যে রহিম অন্যদের চেয়ে একটু বেশি নার্ভাস। সে দুঃশ্চিন্তায় টিকতে না পেরে কাররক্ষীর কাছে গিয়ে দুইজনের মধ্যে কে মৃত্যুদন্ডের হাত থেকে বেঁচে যাবে এই বিষয়ে কিছু জানার চেষ্টা করল। সে গিয়ে কারারক্ষীকে জিজ্ঞেস করল, “কাল সকালে কি আমার ফাঁসি হওয়ার সম্ভাবনা আছে?” কারারক্ষী উত্তরে তাকে শুধালো, দেখো রহিম, আমি তোমার সম্বন্ধে কোনো তথ্য দিতে পারছি না এবং আমি এটিও বলতে পারছি না কে বেঁচে যাবে। তবে তোমাকে ছোট-খাটো একটি তথ্য আমি দিতে পারি। কাল সকালে যে দুজনকে ফাঁসি দেওয়া হবে তাদের একজন সলিম।
“আহ, শান্তি!” রহিম মনে মনে ভাবল। “আগে আমার বেঁচে থাকার সম্ভাবনা ছিলে তিনজনে একজন অর্থাৎ ১/৩ বা ৩৩ শতাংশ। এখন যেহেতু সলিমের ফাঁসি নিশ্চিত তাই আমার এবং করিমের মধ্যে একজনের মৃত্যুদন্ড হবে। অর্থাৎ আমার বেঁচে থাকার সম্ভাবনা হলো ১/২ বা ৫০ শতাংশ। বেঁচে যাওয়ার সম্ভাবনা আগের চেয়ে বেড়ে গেল।“
কিন্তু সত্যিই কি তাই? আপনারাও কি একই ভাবনা ভাবছেন? যদিও রহিমের এই ভাবনাটি ঠিক বলেই মনে হচ্ছে কিন্তু এটি আপাদমস্তক ভুল! সত্যিকার অর্থে কাররক্ষীর কাছ থেকে প্রশ্নের উত্তর পাওয়ার পর রহিমের বেঁচে থাকার সম্ভাবনার কোনো পরিবর্তন হবে না উল্টো করিমের বেঁচে থাকার সম্ভাবনা এখন রহিমের দ্বিগুণ হয়ে যাবে!!
বিষয়টি অদ্ভুত লাগাই স্বাভাবিক। সম্ভাব্যতা সম্বন্ধে কোনো রকম ধারনা না থাকলেও আমরা কমনসেন্স দিয়েই বুঝতে পারি তিনজনের একজনের ফাঁসি নিশ্চিত হয়ে গেলে বাকী দুজনের মধ্যে একজনের মৃত্যদন্ডের সম্ভাবনা থাকবে সমান সমান অর্থাৎ ৫০ শতাংশ। কিন্তু আইনস্টাইন বলে গিয়েছেন কমনসেন্স হলো কৈশোরকালীন কুসংস্কারের সমন্বয়। কাজেই গাণিতিক সমস্যা আমাদের গাণিতিকভাবেই মোকাবেলা করতে হবে এবং গণিত যে সমাধান দেয় সেটিই গ্রহন করতে হবে। গণিতের সমাধান গ্রহনে কি আমরা বাধ্য? সত্যি বলতে গণিত কখনো আমাদের হতাশ করে না। গণিতের মাধ্যমেই আমরা বিজ্ঞানের সূত্রগুলো প্রকাশ করি এবং সেই অনুযায়ী প্রযুক্তি দাঁড় করাই এবং সেই প্রযুক্তিই আমাদের আধুনিক জীবনধারার আকৃতি তৈরি করে দিয়েছে, তাই গণিত যদি আমাদের কোনো সমস্যার সমাধান করে দেয় সেটি আমরা চাইলেই ফেলে দিতে পারি না তা শুনতে যত অদ্ভুতই শোনাক না কেন। আর সবচেয়ে বড় কথা হলো গণিতের সমাধান শুনতে যতো অদ্ভুতই লাগুক না কেন বাস্তবিক ক্ষেত্রে প্রয়োগ করতে গেলে আমরা দেখতে পাব সেটিই ঠিক। এর আগে আমরা জন্মদিনের সমস্যা কিংবা মন্টিহল সমস্যার ক্ষেত্রে তা দেখেছি।
তাহলে উদ্ভট সমস্যাটির প্রমান লক্ষ্য করা যাক। গাণিতিক অপারেটর ব্যবহার করে এটির প্রমাণ দেখাতে গেলে সাধারণ পাঠকের অনেকেরই বোধগম্য হবে না, তাই কথায় কথায় এগোনো যাক।
রহিম কারারক্ষীর কাছ থেকে তার নিজের ব্যাপারে কোনো তথ্য জানতে পারছে না কাজেই শুরুতেই রহিম বুঝতে পারছে কারারক্ষী তাকে অন্য দুজনের মধ্যে একজনের নাম বলবে। কারারক্ষীর কাছ থেকে শোনার আগে রহিমের কাছে তার বেঁচে থাকার সম্ভাবনা ১/৩, যা অন্য দুজনের জন্যও একই। আমরা বিষয়টিকে তিনটি ভাগে ভাগ করে চিন্তা করতে পারি। ১. সলিম বেঁচে যাবে, অথবা ২. করিম বেঁচে যাবে কিংবা ৩. রহিম বেঁচে যাবে। এখন, কারারক্ষী যদি বলে সলিম বেঁচে যাবে তাহলে রহিম এবং করিম উভয়েরই পরদিন ফাঁসী হয়ে যাবে। কিন্তু যেহেতু কারারক্ষী রহিমের বিষয়ে কিছু বলতে পারছে না এবং কে বেঁচে থাকবে সেই বিষয়েও কোনো তথ্য দিতে পারছে না, তাই সলিমের বেঁচে যাওয়ার থাকলে কারারক্ষী কেবল বলতে পারবে, করিমকে আগামীকাল সকালে ফাঁসী দেওয়া হবে। একই কথা করিমের ক্ষেত্রেও প্রযোজ্য। করিমের যদি বেঁচে যাওয়ার কথা থাকে তাহলে কারারক্ষী কেবল বলতে পারে সলিমকে আগামীকাল ফাঁসী দেওয়া হবে। এই দুই ক্ষেত্রে কারারক্ষীর কোনো বাছাইয়ের সুযোগ নেই, তাকে সুনির্দিষ্ট তথ্যই দিতে হবে। কিন্তু রহিমের ব্যাপারটি ভিন্ন। যদি করিমের বেঁচে যাওয়ার থাকে তাহলে করিম ও সলিম উভয়েরই ফাঁসী হবে এবং কারারক্ষীর কাছে তথ্য বাছাই করার সুযোগ থাকবে। সে বলতে পারবে করিমকে মৃত্যুদন্ড দেওয়া হবে কিংবা সলিমকে মৃত্যুদন্ড দেয়া হবে। তাহলে বিষয়টি দাঁড়ালো, যদি কারারক্ষী সলিম বা করিমের যে কোনো একজনের মৃত্যুদন্ড দেয়ার কথা বলে তাহলে কি কি সম্ভাবনা দাঁড়ায় সেগুলোর একটি তালিকা করা যাক।
১. রহিম বেঁচে যাবে এবং কারারক্ষী বলবে করিমের ফাঁসী হবে এই সম্ভাবনা (১/৩× ১/২) = ১/৬, (১/৩ হলো রহিমের বেঁচে যাওয়ার সম্ভাবনা এবং ১/২ হলো কারারক্ষীর বাছাইয়ের সম্ভাবনা)
২. রহিম বেঁচে যাবে এবং কারারক্ষী বলবে সলিমের ফাঁসী হবে এই সম্ভাবনা (১/৩× ১/২) = ১/৬, (১/৩ হলো রহিমের বেঁচে যাওয়ার সম্ভাবনা এবং ১/২ হলো কারারক্ষীর বাছাইয়ের সম্ভাবনা)
৩. করিম বেঁচে যাবে এবং কারারক্ষী বলবে সলিমকে ফাঁসী দেওয়া হবে।
৪. সলিম বেঁচে যাবে এবং কারারক্ষী বলবে করিমকে ফাঁসী দেওয়া হবে।
এখন প্রথম দুটি ক্ষেত্র দেখুন, রহিমের বেঁচে থাকার সম্ভাবনা ১/৩, এবং তার বেঁচে যাওয়ার কথা থাকলে এই ১/৩ এর মধ্যে কারারক্ষীর ১/২ বার বলার সম্ভাবনা করিমের ফাঁসী হবে এবং ১/২ বার বলার সম্ভাবনা সলিমের ফাঁসী হবে। কাজেই রহিম বেঁচে গেলে কারারক্ষী কেবল ১/৬ বার বলবে সলিমের ফাঁসী হবে। কারারক্ষী কেবল রহিম বা সলিমের ফাঁসী হওয়ার কথাই বলতে পারবে শর্ত অনুযায়ী। তাই এই দুই সম্ভাবনা যোগ করলে পাই, ১/৬ + ১/৬ = ১/৩, অর্থাৎ করিম বা সলিম যার কথাই বলা হোক না কেন, রহিমের বেঁচে যাওয়ার সম্ভাবনা ১/৩ ই থাকছে।
এখন দেখুন, কারারক্ষী যদি করিমের কথা বলে, তাহলে অবধারিতভাবে করিমের ফাঁসী হবে এবং বেঁচে থাকার সম্ভাবনা কেবল রহিম আর সলিমের মধ্যে ভাগ হবে। যেহেতু রহিমের বেঁচে থাকার সম্ভাবনা কারারক্ষীর যেকোনো বক্তব্যের ক্ষেত্রে ১/৩ ই থাকছে তাহলে সলিমের বেঁচে থাকার সম্ভাবনা হবে বাকী ২/৩, যা রহিমের বেঁচে থাকার সম্ভাবনা দ্বিগুন।
একইভাবে, কারারক্ষী যদি সলিমের কথা বলে, তাহলে অবধারিতভাবে সলিমের ফাঁসী হবে এবং বেঁচে থাকার সম্ভাবনা কেবল রহিম আর সলিমের মধ্যে ভাগ হবে। যেহেতু রহিমের বেঁচে থাকার সম্ভাবনা কারারক্ষীর যেকোনো বক্তব্যের ক্ষেত্রে ১/৩ ই থাকছে তাহলে করিমের বেঁচে থাকার সম্ভাবনা হবে বাকী ২/৩, যা রহিমের বেঁচে থাকার সম্ভাবনা দ্বিগুন।
কাজেই বোঝা যাচ্ছে কারারক্ষী করিম বা সলিম এই দু’জনের যার ফাঁসীই নিশ্চিত করুক না কেন তাতে রহিমের বেঁচে থাকার সম্ভাবনা বাড়ে না বরং অপরজনের বেঁচে থাকার সম্ভাবনা দ্বিগুন হয়ে যায়! বিষয়টিকে এখনো একটু জটিল মনে হতে পারে, তবে যদি প্রথম শর্তদুটো চিন্তা করে দেখেন তাহলে কিছুটা বোধগম্য হতে পারে। যেহেতু কারারক্ষী শুরুতেই বলে দিয়েছে রহিম সম্বন্ধে সে কোনো তথ্য দিতে পারবে না, তাই শুরুতেই তার অবস্থান অনিশ্চিত হয়ে যায়। আরেকটি শর্ত ছিলো, কাররক্ষী কে বেঁচে যাবে তার কোনো তথ্য দিতে পারবে না। কিন্তু যদি এই শর্তটি না থাকত তাহলে সম্ভাব্যতা অনুযায়ী নিচের ছয়টি ঘটনার প্রত্যেকটি ঘটার সম্ভাবনা সমান হতো।
১. রহিম বেঁচে যাবে, কারারক্ষী বলবে করিমের মৃত্যুদন্ড দেয়ার খবর। (১/৬)
২. রহিম বেঁচে যাবে, কারারক্ষী বলবে সলিমের মৃত্যুদন্ড দেয়ার খবর। (১/৬)
৩. করিম বেঁচে যাবে, কারারক্ষী বলবে সলিমের মৃত্যুদন্ড দেয়ার খবর। (১/৬)
৪. করিম বেঁচে যাবে, কারারক্ষী বলবে করিমের বেঁচে যাওয়ার খবর। (১/৬)
৫. সলিম বেঁচে যাবে, কারারক্ষী বলবে করিমের মৃত্যুদন্ড দেয়ার খবর। (১/৬)
৬. সলিম বেঁচে যাবে, কারারক্ষী বলবে সলিমের বেঁচে যাওয়ার খবর। (১/৬)
কারারক্ষী বেঁচে যাওয়ার খবর বলতে পারলে এই ছয়টি ঘটনার প্রতিটি ঘটার সম্ভাবনা থাকত ১/৬। যেহেতু বেঁচে যাওয়ার খবর কারারক্ষী দিতে পারছে না তাই ৪ ও ৬ নং ঘটনাগুলো যথাক্রমে ৩ ও ৪ নং ঘটনা দ্বারা প্রতিস্থাপিত হয়ে যাবে এবং ৩ ও ৫ নং ঘটনা ঘটনার সম্ভাবনা হয়ে যাবে ১/৩ করে।
এখানেই এই অদ্ভুতুড়ে সম্ভাব্যতার রহস্য লুকিয়ে আছে। যেহেতু রহিম এই ব্যবস্থাটির ১/৩ বা একতৃতীয়াংশ তাই কারারক্ষী কোনো একজনের নাম নিশ্চিত করে ফেললে অপরজন বাকী ২/৩ বা দুইতৃতীয়াংশ সম্ভাবনা পেয়ে যায়। এভাবে চিন্তা করতে পারলে রহস্য কিছুটা বোধগম্য হয়ে আসতে পারে।
আরো সহজ করে দিচ্ছি। কারারক্ষী যখনই প্রথম দুটো শর্তের কথা বলে দিয়েেছে (রহিমের বিষয়ে বা কে বেঁচে যাবে সে সম্বন্ধে কোনো কিছু বলা যাবে না) তখনই রহিমের বুঝে যাওয়ার কথা যে সে করিম অথবা সলিমের নাম বলবে। আর এ দুটি নামের যেকোনোটিই রহিমের কাছে একই অর্থ বহন করে। কাজেই কার নাম বলছে তাতে রহিমের আর কিছু যায় আসে না। অর্থাৎ কারারক্ষীর প্রশ্নের উত্তরের আর রহিমের কাছে কোনো গুরুত্ব নেই। কাজেই কারারক্ষী তথ্য দিক বা না দিক রহিমের সম্ভাব্যতার কোনো পরিবর্তন হচ্ছে না, অর্থাৎ একতৃতীয়াংশই থাকছে।

আমরা নিয়মিত বিজ্ঞানের বিভিন্ন বিষয় নিয়ে জনপ্রিয়-বিজ্ঞান ও গবেষণা-ভিত্তিক লেখালেখি করি বিজ্ঞান ব্লগে। এছাড়া আমাদের লেখকেরা বিভিন্ন সময় বিজ্ঞান-বিষয়ক বইও প্রকাশ করে থাকেন। ই-মেইলের মাধ্যমে এসব খবরা-খবর পেতে নিচের ফর্মটি ব্যবহার করুন। ।

লিখেছেন bengalensis

পোস্টডক্টরাল গবেষক: Green Nanomaterials Research Center Kyungpook National University Republic of Korea.

bengalensis বিজ্ঞান ব্লগে সর্বমোট 71 টি পোস্ট করেছেন।

লেখকের সবগুলো পোস্ট দেখুন

মন্তব্যসমূহ

    • আরাফাত রহমান Reply

      কোন ডায়াগ্রাম ব্যবহার করে সম্ভাবনার হিসেবটা সহজবোধ্য করে উপস্থাপন করা যায় কি?

      • bengalensis Reply

        করা যেত, কিন্তু সেটা লেকচার দেওয়ার ক্ষেত্রেই বেশি কাজে লাগবে বলে মনে হয়। তবু চেষ্টা করে দেখতে পারি।

আপনার মতামত

This site uses Akismet to reduce spam. Learn how your comment data is processed.